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Moreover, a comparison of the growth rates obtained from these data ries (fig. 6). This result challenges the idea that dinosaurs exhibited a meta-

Statistical Problems Biological Problems

sets reveals a pronounced degree of overlap among dinosaurs and otheran-  bolic mode distinct from extant species.
imals groups in both the endothermic and ectothermic metabolic catego-

Many previous studies have used growth rates to determine dinosaur correlation, which occurs because G, has M as an explicit factor. In studies that have claimed to find evidence for dinosaur mesothermy pied an intermediate position, which researchers interpreted as mesothermy. In addition to statistical issues, studies of dinosaur metabolism face substan-  biological problems in particular undermine confidence in the prior con-

metabolism. These studies compared the allometric scaling of maximum [ show that when the correct variable (i.e,, maximum mass-specific 6,7, investigators regressed averages of G, versus averages of M for poly- However, my reanalysis of this approach and the underlying data sets tial challenges imposed by fundamental constraints of biology. Three clusions about the metabolism of dinosaurs. e

growth rate (Gp,x) as a function of maximum body mass (M) for dinosaurs  growth rate rather than G,,.,,) is used in the regression, available data show phyletic groups of species. They found that the endothermic groups cluster has identified several serious statistical problems that call these conclusions . . A o 100 /e (1) 10 10 E 109 10 107
with the scaling for extant groups in order to classity dinosaur metabolism no correlation between growth rate and BMR. Moreover, the practice of using separately from ectothermic groups on log-log charts; dinosaur groups occu-  into question |8, 9. Four distinct kinds of statistical error are involved. Metab OllSIIl CaIlIlOt deP end Oon the avVer age Of d P OlYPhYleth gl‘ OllP. " R I o | L @
as endothermic, ectothermic, or something in between (mesothermic) regressions across dinosaur taxa as a means to classify all dinosaurs is not Basal metabolic rate (BMR) is a characteristic inherent to an individual spe-  average of growth rates spanning broad taxonomic groups such as families Birds (altricial) | ‘

Kleiber’s Law holds that basal metabolic rate BMR = a M". Previous valid, for both statistical and biological reasons. Birds (altricial)} :

cies or taxon. The parameter has no valid meaning when estimated from an or orders.

studies have shown that, with reasonably high correlation, G, = ¢ M* with My reanalysis of previously published data sets in fact finds that the

roughly similar exponents 0.6 < b, d < 0.9, depending on the taxonomic growth rates of dinosaur taxa overlap with those ot both endothermic and ChOOSing the WIr ()llg | § egl‘ eSSiOll var iables yieldS miSleading re SllltS. E Growth rate can determine metab Olism on ly at the level Of SP ecie S.

Birds (precocial)} ‘
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olism use methods that build on pioneering work by Ted J. Case [ 1|, which no universal law relating metabolic rate and body size—nor has one been ' 10 /

these later studies cite (fig. 1). Case’s own papers make clear, however, thathe  found in the years since. 10" Y 10’
did not believe that metabolism can be deduced from growth rates (fig. 2). Precocial Birds

varies considerably; it is now clear that no single value applies universally.

T

grorlp'. It does nor forlow that G.Hfax ' related te BMX, }rowever, l?ecause ectotherrnic extent anirn als. Teonelude thet o carmot deterrnine the The maximum growth rate is obtained by using the equation Gpe, = kM e—r) In fact, using M in the regression effectively applies a geometric shear Animal species show a wide diversity of metabolic rates, and by definition There exists no mechanism by which the metabolic rate of an extant species Eutheriansy ‘ R |
statistical g;)rre}llatron 1sfn0t gar;sr}tlrve. I;rror stlllldrels) used m(;lpproprrate regres-  metab ocillrsrn ;)f either dinosaur or extant animal species by using growth- where kis a growth-rate parameter. M is an inappropriate choice of regres- transformation, which produces high correlation and low scatter as an this diversity cannot be “inherited” by a broad taxonornrc group over mil- can reach back through time to inform, via some shared ancestor, the meta-
sion variables that confounded this relationshi Introducing a spurious rate studies alone. : : o e : : : : : . . . . . ’ ’
p by gasp 1s.ron variable because it is a factor in this equation and is thus inextricably artifact (fig. 1B). The inappropriate choice of regression variable thus con- lions of years of evolution—diversity means interspecies variation. bolic rate ofa species on some other branch of the phylogenetic tree. Marsupials} ‘ — |
inked to G ... founds the analysis.
. ° s Dinosaurs} n———annin--uennfl-n
. . " : - . . i El The metabolic theory of ecology is not supported by empirical data. kt . ‘
Crocodilest e _ arsupials| :
Pl‘l o] g WO rk B Ul It on Ca Seé'S MEthOd A MEthOd Ca Se RE] eCtEd ‘ 9 / The metabolic theory of ecology, widely applied in these studies, assumes Moreover, when empirical data for BMR and M are plotted on a semilog rocodies H “h ;
| | | B Altricial Birds 10 Gray = M k/E / / that a simple power law, such as BMIR = a M, relates metabolism to maxi- chart, often the result is a complex curve, not the straight line that a power Squamates} l—l-lI.ll—-l——- : Dinosaurs '“‘""'*'“" '
Nearly all previous studies that use growth rates to analyze dinosaur metab- In fact, Case was troubled by the fact that empirically there seemed to be x / % mum body mass. But the value of the exponent b used in published studies  law should produce (fig. 4).
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fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings s wadsleyite upwells across including all major dinosaur clades. Using a metabolic scaling approach, we find that 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were er e ess I I Ia n y rece n S u IeS O n e grOW - a rsu pla S
dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first bird: e olivine stability field (3, 27). | growth and metabolic rates follow theoretical predictions across clades, although some clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms Y =
Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. te that hydrous melt is grav- | groups deviate. Moreover, when the effects of size and temperature are considered and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a
Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and s . . ! . . iy h lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, M M ° B
other basalmost birds follow. Growth analysis for Archaeopteryx suggests that these animals showed exponential growth pt.he 410 (22’1?0 or;nce mel}‘ils dinosaur metabolic rates were intermediate to those of endotherms and ectot_herms and d were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our a n I I Ieta O ISI I I O I n Osa u rS ave u I t u O n —
rates like non-avialan dinosaurs, three times slower than living precocial birds, but still within the lowermost range for all main or spread laterally rather | closest to those of extant mesotherms. Our results suggest that the modern dichotomy of results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly
endothermic vertebrates. clear correlation with ongoing | endothermic versus ectothermic is overly simplistic. indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth
) L . o ) . 1s. Seismic detections of a low- , the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of ] . o B
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retention of the phylogenetically earlier paravian dinosaur condition when size is considered. The first birds were simply North America and globally acterization of dinosaurs by early paleon- | (I-3). This debate is of more than heuristic inter- tudied dinosau [l a r S ~ — — -
feathered dinosaurs with respect to growth and energetic physiology. The evolution of the novel pattern in modern forms . £ dehydrati It logi lumberi 1 bolizing ) ion is closely linked to lif _'I
o) (5 10 (7 GenHE (e, ation of dehydration melting tologists as lumbering, slow-metabolizing | est; energy consumption is closely linked to life —
lling across the 660 and up- ectotherms has been challenged. Recent | history, demographic, and ecological traits (4). Citation: Wern iebeler EM (2014) Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had . [ J @ @ [ :
410 could create a long-term studies propose that dinosaurs were ca- | Extant endothermic mammals and birds pos- Growth Rates T f Fast Growing Ectothermic Sauropsids. PLoS ONE 9(2): e88834. doi:10.1371/journal.pone.0088834 L
Citation: Erickson GM, Rauhut OWM, Zhou Z, Turner AH, Inouye BD, et al. (2009) Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in nsition zone (4) pable of an active lifestyle and were metaboli- | sess metabolic rates ~5 to 10 times higher than i i of America u I N -~
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itit is valid to regress A on B and to regress B on C, then it must be valid analysis can differ greatly depending on the choice and order of the vari-

Figure 2. In his 1978 article, Case plotted growth rate versus body weight for species of many kinds to regress A on C as well. But this is demonstrably not the case, as is well ables used (fig. 6).
and noted substantial scatter that prevents assignment of a simple relationship between the two.
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FiG. 1 individual species. Performing regressions on averages taken across wide of a famous problem in statistical inference known as the ecological fallacy

b, bats; i, insectivores; r, rodents; 1, lagomorphs; f, fissiped carnivores; s, pinniped carnivores; e, probosci-

deans; u, ungulates; p, primates; c, cetaceans; e, edentates; m, marsupials; o, monotremes. gI'OllPS Of blologlcally distinct Species can produce hlghly misleading I'€SU.1tS [10]

is illustrated here. The correlations are moderately strong for BMR versus M (B) and k /& versus M (C), but
there is little correlation between BMR and k /& (D). Figure from ref [8]




